论文标题

关于基于混乱的S-boxes的设计

On the Design of Chaos-Based S-boxes

论文作者

Dimitrov, Miroslav

论文摘要

替换箱(S-boxes)是关键的非线性元素,可实现现代块和溪流密码的隐式抗性。鉴于它们的重要性,存在各种S-box构建策略。在本文中,分析了使用混沌函数(CF)产生的S框以测量其对线性隐式分析的实际耐药性。上述论文仅强调S-box坐标的平均非线性,而忽略了该过程中其余的S-box组件。因此,应该重新评估这些研究的大多数。在给定的密码系统中集成此类S-box,应格外小心。此外,我们表明,在非线性优化问题的背景下,使用混乱结构的利润可以忽略不计。通过使用两种启发式方法,从伪随机S框开始,我们反复到达S框,用这些加密术语,它们的表现明显优于所有先前基于CF的S-boxes,上述论文利用该纸张进行比较。此外,我们将多武器的匪徒问题与最大化S-box平均坐标非线性值的问题联系起来,这进一步使我们得出了近乎最佳的平均坐标非线性值,明显大于文献中已知的非线性值。

Substitution boxes (S-boxes) are critical nonlinear elements to achieve cryptanalytic resistance of modern block and stream ciphers. Given their importance, a rich variety of S-box construction strategies exists. In this paper, S-boxes generated by using chaotic functions (CF) are analyzed to measure their actual resistance to linear cryptanalysis. The aforementioned papers emphasize on the average nonlinearity of the S-box coordinates only, ignoring the rest of the S-box components in the process. Thus, the majority of those studies should be re-evaluated. Integrating such S-boxes in a given cryptosystem should be done with a considerable caution. Furthermore, we show that in the context of nonlinearity optimization problem the profit of using chaos structures is negligible. By using two heuristic methods and starting from pseudo-random S-boxes, we repeatedly reached S-boxes, which significantly outperform all previously published CF-based S-boxes, in those cryptographic terms, which the aforementioned papers utilize for comparison. Moreover, we have linked the multi-armed bandit problem to the problem of maximizing an S-box average coordinate nonlinearity value, which further allowed us to reach near-optimal average coordinate nonlinearity values significantly greater than those known in literature.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源