论文标题

使用生成对抗网络从结构底眼图像产生底底荧光血管造影图像

Generating Fundus Fluorescence Angiography Images from Structure Fundus Images Using Generative Adversarial Networks

论文作者

Li, Wanyue, Kong, Wen, Chen, Yiwei, Wang, Jing, He, Yi, Shi, Guohua, Deng, Guohua

论文摘要

荧光素血管造影可以提供视网膜血管结构和功能的图,这通常用于眼科诊断中,但是,这种成像方式可能会对患者造成伤害。为了帮助医生减少诊断的潜在风险,采用了图像翻译方法。在这项工作中,我们提出了一种有条件的生成对抗网络(GAN) - 直接学习结构底面图像与底面荧光血管造影图像之间的映射关系的方法。此外,定义每个像素的重要性的局部显着图被用来定义GAN成本函数的新型显着性损失。这有助于更准确地学习小血管和荧光素泄漏特征。

Fluorescein angiography can provide a map of retinal vascular structure and function, which is commonly used in ophthalmology diagnosis, however, this imaging modality may pose risks of harm to the patients. To help physicians reduce the potential risks of diagnosis, an image translation method is adopted. In this work, we proposed a conditional generative adversarial network(GAN) - based method to directly learn the mapping relationship between structure fundus images and fundus fluorescence angiography images. Moreover, local saliency maps, which define each pixel's importance, are used to define a novel saliency loss in the GAN cost function. This facilitates more accurate learning of small-vessel and fluorescein leakage features.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源