论文标题

同时回归和支持估计的功能组桥

Functional Group Bridge for Simultaneous Regression and Support Estimation

论文作者

Wang, Zhengjia, Magnotti, John, Beauchamp, Michael S., Li, Meng

论文摘要

本文是通过研究对颅内脑电图(IEEG)实验中大脑活动的多感觉影响的动机。在大多数地区,对多感官刺激表现的差异性脑活动为零,在某些局部区域中,大脑活动的差异为零,从而产生局部稀疏功能。此类研究本质上是一个在量表中的功能回归问题,而兴趣不仅集中在估计非参数功能上,而且还集中在恢复功能支持上。我们提出了一种加权组桥方法,以同时函数估计和支持在尺度混合效应模型中的恢复,同时考虑功能数据中存在的异质性。我们使用b-splines将函数的稀疏性转化为其稀疏矢量的尺寸增加,并使用嵌套的替代方向方法(ADMM)提出了快速的非Convex优化算法,以进行估计。建立了较大的样本特性。特别是,我们表明,在$ l_2 $ norm中,估计系数函数在最小值中是最佳速率,并且类似于相变现象。为了获得支持估计,我们在$ l _ {\ infty} $规范下得出了收敛率,该规范在$δ$ -Sparsity下导致稀疏性属性,并提供了一个简单的足够的规律性条件,在该条件下建立了严格的稀疏性属性。提出了调整后的扩展贝叶斯信息标准,以进行参数调整。通过仿真来说明开发的方法,并应用于新型IEEG数据集以研究多感官集成。我们将拟议的方法集成到Rave中,Rave是一种R包,在IEEG社区中获得了越来越多的知名度。

This article is motivated by studying multisensory effects on brain activities in intracranial electroencephalography (iEEG) experiments. Differential brain activities to multisensory stimulus presentations are zero in most regions and non-zero in some local regions, yielding locally sparse functions. Such studies are essentially a function-on-scalar regression problem, with interest being focused not only on estimating nonparametric functions but also on recovering the function supports. We propose a weighted group bridge approach for simultaneous function estimation and support recovery in function-on-scalar mixed effect models, while accounting for heterogeneity present in functional data. We use B-splines to transform sparsity of functions to its sparse vector counterpart of increasing dimension, and propose a fast non-convex optimization algorithm using nested alternative direction method of multipliers (ADMM) for estimation. Large sample properties are established. In particular, we show that the estimated coefficient functions are rate optimal in the minimax sense under the $L_2$ norm and resemble a phase transition phenomenon. For support estimation, we derive a convergence rate under the $L_{\infty}$ norm that leads to a sparsistency property under $δ$-sparsity, and provide a simple sufficient regularity condition under which a strict sparsistency property is established. An adjusted extended Bayesian information criterion is proposed for parameter tuning. The developed method is illustrated through simulation and an application to a novel iEEG dataset to study multisensory integration. We integrate the proposed method into RAVE, an R package that gains increasing popularity in the iEEG community.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源