论文标题

广泛匹配几次学习事件检测

Extensively Matching for Few-shot Learning Event Detection

论文作者

Lai, Viet Dac, Dernoncourt, Franck, Nguyen, Thien Huu

论文摘要

超速学习设置下的当前事件检测模型无法转移到NewEvent类型。在事件检测中,很少有射击的学习尚未得到探索,即使它是一个模型,可以很好地在新事件类型上发挥高发电性。在这项工作中,我们将事件检测视为一些弹出的学习问题,以使事件检测到新事件类型。我们提出了两个Novelloss因素,这些因素与SUP港口中的示例相匹配,以向Themodel提供更多的培训信号。此外,这些培训信号可能会在许多基于公制的几杆学习模型中受到影响。我们在Theace-2005数据集(在几次学习的过程中)进行的广泛实验表明,所提出的方法可以激发少量学习的性能

Current event detection models under super-vised learning settings fail to transfer to newevent types. Few-shot learning has not beenexplored in event detection even though it al-lows a model to perform well with high gener-alization on new event types. In this work, weformulate event detection as a few-shot learn-ing problem to enable to extend event detec-tion to new event types. We propose two novelloss factors that matching examples in the sup-port set to provide more training signals to themodel. Moreover, these training signals can beapplied in many metric-based few-shot learn-ing models. Our extensive experiments on theACE-2005 dataset (under a few-shot learningsetting) show that the proposed method can im-prove the performance of few-shot learning

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源