论文标题

Fefferman-Graham和Bondi仪表中的流体/重力对应关系

Fefferman-Graham and Bondi Gauges in the Fluid/Gravity Correspondence

论文作者

Ciambelli, Luca, Marteau, Charles, Petropoulos, P. Marios, Ruzziconi, Romain

论文摘要

在三维重力中,我们讨论了Fefferman-Graham仪表,Bondi仪表和Eddington-Finkelstein类型的量表之间的关系,通常称为流体/重力对应关系所涉及的衍生膨胀。从负宇宙常数开始,对于每个量规,我们得出溶液空间和残余规格的差异性。我们明确构建与各个仪表相关的差异性,并确定其边界数据的精确匹配。我们表明,邦迪(Bondi)和fefferman-graham仪表是等效的,而源自部分量规固定的流体/重力衍生物膨胀表现出一个编码边界流体速度的额外未指定功能。事实证明,邦迪量表描述了衍生物扩展溶液空间的子空间,该空间在特定的流体动力框架中具有流体。我们使用Bondi仪表的Ricci-Flat极限和流体/重力衍生物扩张的限制进行分析。它们之间的关系持续在这个限制中,这是明确的和非平凡的。此外,衍生物扩展图的平坦极限映射到边界上的超相关限制。此过程允许根据边界Carrollian双流体来阐明Bondi量规的全息特性,以消除宇宙常数。

In three-dimensional gravity, we discuss the relation between the Fefferman--Graham gauge, the Bondi gauge and the Eddington--Finkelstein type of gauge, often referred to as the derivative expansion, involved in the fluid/gravity correspondence. Starting with a negative cosmological constant, for each gauge, we derive the solution space and the residual gauge diffeomorphisms. We construct explicitly the diffeomorphisms that relate the various gauges, and establish the precise matching of their boundary data. We show that Bondi and Fefferman--Graham gauges are equivalent, while the fluid/gravity derivative expansion, originating from a partial gauge fixing, exhibits an extra unspecified function that encodes the boundary fluid velocity. The Bondi gauge turns out to describe a subspace of the derivative expansion's solution space, featuring a fluid in a specific hydrodynamic frame. We pursue our analysis with the Ricci-flat limit of the Bondi gauge and of the fluid/gravity derivative expansion. The relations between them persist in this limit, which is well-defined and non-trivial. Moreover, the flat limit of the derivative expansion maps to the ultra-relativistic limit on the boundary. This procedure allows to unravel the holographic properties of the Bondi gauge for vanishing cosmological constant, in terms of its boundary Carrollian dual fluid.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源