论文标题

使用复杂的周期性高斯状态的2+1D紧凑型QED中的实时动力学

Real-time dynamics in 2+1d compact QED using complex periodic Gaussian states

论文作者

Bender, Julian, Emonts, Patrick, Zohar, Erez, Cirac, J. Ignacio

论文摘要

我们引入了一类变异状态,以研究(2+1)维QED中的基态特性和实时动力学。这些基于复杂的高斯州,这些状态是定期定期的,以说明$ u(1)$ gauge字段的紧凑性质。由于对期望值的评估涉及无限总和,因此我们为整个变异流形提出了一个近似方案。我们计算了最高20美元$ $ 20 $的晶格尺寸的基态能量密度,并推断到整个耦合区域的热力学极限。此外,我们通过拟合两个静态电荷之间的电势并拟合空间威尔逊环的指数衰减来研究弦张力。由于安萨兹不需要在当地的希尔伯特空间中截断,因此我们分析了其他方法中存在的截断效应。根据$ \ mathbb {z} _3 $ lattice仪表理论的确切的对角线化结果,对差异状态进行了基准测试。使用时间依赖性的变分原理,我们研究了各种全局淬火后的实时动力学,例如淬灭弱耦合方案后两个电荷之间强烈限制电场的时间演变。直到有限尺寸效应开始发挥作用的点,我们观察到平衡行为。

We introduce a class of variational states to study ground state properties and real-time dynamics in (2+1)-dimensional compact QED. These are based on complex Gaussian states which are made periodic in order to account for the compact nature of the $U(1)$ gauge field. Since the evaluation of expectation values involves infinite sums, we present an approximation scheme for the whole variational manifold. We calculate the ground state energy density for lattice sizes up to $20 \times 20$ and extrapolate to the thermodynamic limit for the whole coupling region. Additionally, we study the string tension both by fitting the potential between two static charges and by fitting the exponential decay of spatial Wilson loops. As the ansatz does not require a truncation in the local Hilbert spaces, we analyze truncation effects which are present in other approaches. The variational states are benchmarked against exact solutions known for the one plaquette case and exact diagonalization results for a $\mathbb{Z}_3$ lattice gauge theory. Using the time-dependent variational principle, we study real-time dynamics after various global quenches, e.g. the time evolution of a strongly confined electric field between two charges after a quench to the weak-coupling regime. Up to the points where finite size effects start to play a role, we observe equilibrating behavior.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源