论文标题
深度学习遇到SAR
Deep Learning Meets SAR
论文作者
论文摘要
遥感中的深度学习已成为国际炒作,但大部分仅限于对光学数据的评估。尽管在合成的孔径雷达(SAR)数据处理中引入了深度学习,尽管成功进行了首次尝试,但其巨大的潜力仍然锁定。在本文中,我们提供了最相关的深度学习模型和概念的介绍,通过分析SAR数据的特殊特征,回顾深度深度应用的最新学习,总结可用的基准测试,并推荐一些重要的未来研究指示,来指出可能的陷阱。通过这项努力,我们希望在这个有趣但又探索的研究领域中刺激更多的研究,并为在大型SAR数据处理工作流中使用深度学习铺平道路。
Deep learning in remote sensing has become an international hype, but it is mostly limited to the evaluation of optical data. Although deep learning has been introduced in Synthetic Aperture Radar (SAR) data processing, despite successful first attempts, its huge potential remains locked. In this paper, we provide an introduction to the most relevant deep learning models and concepts, point out possible pitfalls by analyzing special characteristics of SAR data, review the state-of-the-art of deep learning applied to SAR in depth, summarize available benchmarks, and recommend some important future research directions. With this effort, we hope to stimulate more research in this interesting yet under-exploited research field and to pave the way for use of deep learning in big SAR data processing workflows.