论文标题

相对论恒星的转折点原理

Turning point principle for relativistic stars

论文作者

Hadzic, Mahir, Lin, Zhiwu

论文摘要

指定状态方程后,将爱因斯坦 - 欧拉尔系统的球形对称稳态嵌入到1参数溶液中,其特征在于其中央红移的值。在1960年代的Zel'Dovich [50]和Wheeler [22]中,提出了一个转折点原理,该原理指出,光谱稳定性可以与不稳定交换,仅在Mass-Radius曲线的质量极端上交换。此外,极端的弯曲方向决定是否获得或丢失了生长模式。我们证明了转折点原理,并提供了线性化动力学的详细描述。我们结果的推论之一是,随着中央红移的增加,增长模式的数量已增长到无穷大。

Upon specifying an equation of state, spherically symmetric steady states of the Einstein-Euler system are embedded in 1-parameter families of solutions, characterized by the value of their central redshift. In the 1960's Zel'dovich [50] and Wheeler [22] formulated a turning point principle which states that the spectral stability can be exchanged to instability and vice versa only at the extrema of mass along the mass-radius curve. Moreover the bending orientation at the extrema determines whether a growing mode is gained or lost. We prove the turning point principle and provide a detailed description of the linearized dynamics. One of the corollaries of our result is that the number of growing modes grows to infinity as the central redshift increases to infinity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源