论文标题

矩阵Fisher分布的概率定向估计

Probabilistic orientation estimation with matrix Fisher distributions

论文作者

Mohlin, D., Bianchi, G., Sullivan, J.

论文摘要

本文着重于使用深神经网络对3D旋转($ so(3)$)的概率分布进行估算。由于$ \ mathbb {r}^n $和$ so(3)$之间的拓扑差异,因此在拓扑差异上,学习将模型回归旋转集很困难。我们通过使用神经网络来输出矩阵Fisher分布的参数来克服此问题,因为这些参数是同型至$ \ Mathbb {r}^9 $。通过对此分布使用负的对数似然损失,我们将获得相对于网络输出的损失。通过优化这种损失,我们可以改善几个具有挑战性的数据集,即Pascal3d+,ModelNet10- $ SO(3)$和UPNA HEAD POSE。

This paper focuses on estimating probability distributions over the set of 3D rotations ($SO(3)$) using deep neural networks. Learning to regress models to the set of rotations is inherently difficult due to differences in topology between $\mathbb{R}^N$ and $SO(3)$. We overcome this issue by using a neural network to output the parameters for a matrix Fisher distribution since these parameters are homeomorphic to $\mathbb{R}^9$. By using a negative log likelihood loss for this distribution we get a loss which is convex with respect to the network outputs. By optimizing this loss we improve state-of-the-art on several challenging applicable datasets, namely Pascal3D+, ModelNet10-$SO(3)$ and UPNA head pose.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源