论文标题
关于斐波那契混合数的新概括
On a new generalization of Fibonacci hybrid numbers
论文作者
论文摘要
Ozdemir [9]引入了杂种数,作为复杂,双重和双曲数的新概括。 A hybrid number is defined by $k=a+bi+cε+dh$, where $a,b,c,d$ are real numbers and $% i,ε,h$ are operators such that $i^{2}=-1,ε^{2}=0,h^{2}=1$ and $ih=-hi=ε+i$.这项工作的目的是试图引入双周期的Horadam混合数字,从而推广了经典的Horadam混合数量。我们给出了这些新混合数字的生成函数,BINET公式和一些基本属性。此外,我们研究了广义的双期纤维纤维杂种数与广义双周期\ lucas杂种数之间的一些关系。
The hybrid numbers were introduced by Ozdemir [9] as a new generalization of complex, dual, and hyperbolic numbers. A hybrid number is defined by $k=a+bi+cε+dh$, where $a,b,c,d$ are real numbers and $% i,ε,h$ are operators such that $i^{2}=-1,ε^{2}=0,h^{2}=1$ and $ih=-hi=ε+i$. This work is intended as an attempt to introduce the bi-periodic Horadam hybrid numbers which generalize the classical Horadam hybrid numbers. We give the generating function, the Binet formula, and some basic properties of these new hybrid numbers. Also, we investigate some relationships between generalized bi-periodic Fibonacci hybrid numbers and generalized bi-periodic\ Lucas hybrid numbers.