论文标题
通过模型和数据缩小复合数据库微表达识别的模型和数据缩小
Revealing the Invisible with Model and Data Shrinking for Composite-database Micro-expression Recognition
论文作者
论文摘要
复合数据库的微表达识别引起了人们越来越多的关注,因为它对现实世界的应用更为实用。尽管复合数据库为学习良好的表示模型提供了更多的样本多样性,但重要的微妙动力很容易消失在域移动中,以使模型极大地降低了其性能,尤其是对于深层模型。在本文中,我们分析了学习复杂性的影响,包括输入复杂性和模型复杂性,并发现较低分辨率的输入数据和较浅的体系结构模型有助于缓解复合数据库任务中深层模型的降级。基于此,我们提出了一个经常性的卷积网络(RCN),以同时探索较浅的体系结构和下分辨率输入数据,缩小模型和输入复杂性。此外,我们开发了三个无参数的模块(即广泛的扩展,快捷连接和注意单元),以与RCN集成而无需增加任何可学习的参数。这三个模块可以从各种角度增强表示能力,同时为低分辨率数据提供不深度的体系结构。此外,可以通过自动策略(神经体系结构搜索策略)进一步结合三个模块,并且搜索架构变得更加强大。 MEGC2019数据集(现有SMIC,CASME II和SAMM数据集的组合)的广泛实验已验证学习复杂性的影响,并表明具有三个模块的RCN和搜索的组合优于最先进的方法。
Composite-database micro-expression recognition is attracting increasing attention as it is more practical to real-world applications. Though the composite database provides more sample diversity for learning good representation models, the important subtle dynamics are prone to disappearing in the domain shift such that the models greatly degrade their performance, especially for deep models. In this paper, we analyze the influence of learning complexity, including the input complexity and model complexity, and discover that the lower-resolution input data and shallower-architecture model are helpful to ease the degradation of deep models in composite-database task. Based on this, we propose a recurrent convolutional network (RCN) to explore the shallower-architecture and lower-resolution input data, shrinking model and input complexities simultaneously. Furthermore, we develop three parameter-free modules (i.e., wide expansion, shortcut connection and attention unit) to integrate with RCN without increasing any learnable parameters. These three modules can enhance the representation ability in various perspectives while preserving not-very-deep architecture for lower-resolution data. Besides, three modules can further be combined by an automatic strategy (a neural architecture search strategy) and the searched architecture becomes more robust. Extensive experiments on MEGC2019 dataset (composited of existing SMIC, CASME II and SAMM datasets) have verified the influence of learning complexity and shown that RCNs with three modules and the searched combination outperform the state-of-the-art approaches.