论文标题
Specht和$ \ Mathfrak {SL} _3 $ Web bases之间的过渡矩阵是关于阴影遏制的unitriangular
The transition matrix between the Specht and $\mathfrak{sl}_3$ web bases is unitriangular with respect to shadow containment
论文作者
论文摘要
网是具有边界的平面图,可描述$ \ mathfrak {sl} _k $的图表表示类别中的形态。它们是由结理论家广泛研究的,因为编织地图提供了一种表达网络图的链接图的分类方式,从而产生了诸如著名的琼斯多项式的量子不变性。代表理论中的一个重要问题是确定不同基础之间的关系。基生基质变化的系数通常描述组合,代数或几何量(例如,Kazhdan-Lusztig多项式)。通过“扁平”编织地图,网也可以看作是对称组表示的基础元素。 在本文中,我们为网络定义了两个新的组合结构:带图及其一维投影,阴影,测量网络内部区域的深度。作为一个应用程序,我们解决了一个开放的猜想,即该对称组表示的所谓规格基础和Web基础之间的基础变化是$ \ mathfrak {sl} _3 $ webs的unitriangular。我们使用带图和阴影来做到这一点,以在网络上构建一个新的部分订单,这是对通常的部分订单的改进。实际上,我们证明,对于$ \ mathfrak {sl} _2 $ -Webs,我们的新部分订单与作者和其他人研究的网络上的Tableau Partial订单相吻合。我们还证明,尽管$ \ mathfrak {sl} _3 $ -webs的新部分订单是对先前研究的Tableau订单的完善,但两个部分订单并不同意$ \ Mathfrak {SL} _3 $。
Webs are planar graphs with boundary that describe morphisms in a diagrammatic representation category for $\mathfrak{sl}_k$. They are studied extensively by knot theorists because braiding maps provide a categorical way to express link diagrams in terms of webs, producing quantum invariants like the well-known Jones polynomial. One important question in representation theory is to identify the relationships between different bases; coefficients in the change-of-basis matrix often describe combinatorial, algebraic, or geometric quantities (like, e.g., Kazhdan-Lusztig polynomials). By "flattening" the braiding maps, webs can also be viewed as the basis elements of a symmetric-group representation. In this paper, we define two new combinatorial structures for webs: band diagrams and their one-dimensional projections, shadows, that measure depths of regions inside the web. As an application, we resolve an open conjecture that the change-of-basis between the so-called Specht basis and web basis of this symmetric-group representation is unitriangular for $\mathfrak{sl}_3$-webs. We do this using band diagrams and shadows to construct a new partial order on webs that is a refinement of the usual partial order. In fact, we prove that for $\mathfrak{sl}_2$-webs, our new partial order coincides with the tableau partial order on webs studied by the authors and others. We also prove that though the new partial order for $\mathfrak{sl}_3$-webs is a refinement of the previously-studied tableau order, the two partial orders do not agree for $\mathfrak{sl}_3$.