论文标题

$ e^3 $:时空能量需求的视觉探索

$E^3$: Visual Exploration of Spatiotemporal Energy Demand

论文作者

Wu, Junqi, Niu, Zhibin, Wu, Jing, Liu, Xiufeng, Zhang, Jiawan

论文摘要

了解需求侧的能源行为对于对能源需求管理的效率响应至关重要。我们与能源专家紧密合作,并确定了能源需求问题的关键要素,包括时间和空间需求以及时空需求的变化。据我们所知,以前没有研究研究时空需求的转变。为了填补这一研究差距,我们提出了一种统一的视觉分析方法来支持探索性需求分析;我们开发了E3,这是一种高度交互式工具,可以通过人类 - 客户服务器的交互来支持用户做出和验证假设。一种新型的基于流动的方法的方法被形式化以在能源需求中的模型转移并集成到服务器端引擎中。然后,专家通过对现实世界电力数据的案例研究进行了评估并肯定了这种方法的实用性。将来,我们将改进建模算法,增强可视化并扩展过程以支持更多形式的能量数据。

Understanding demand-side energy behaviour is critical for making efficiency responses for energy demand management. We worked closely with energy experts and identified the key elements of the energy demand problem including temporal and spatial demand and shifts in spatiotemporal demand. To our knowledge, no previous research has investigated the shifts in spatiotemporal demand. To fill this research gap, we propose a unified visual analytics approach to support exploratory demand analysis; we developed E3, a highly interactive tool that support users in making and verifying hypotheses through human-client-server interactions. A novel potential flow based approach was formalized to model shifts in energy demand and integrated into a server-side engine. Experts then evaluated and affirmed the usefulness of this approach through case studies of real-world electricity data. In the future, we will improve the modelling algorithm, enhance visualisation, and expand the process to support more forms of energy data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源