论文标题

混合系统及其应用的对称抽象

Symmetry Abstractions for Hybrid Systems and their Applications

论文作者

Sibai, Hussein, Mitra, Sayan

论文摘要

动力系统的对称性是将一个轨迹转换为另一个轨迹的地图。我们基于对称性引入了一种用于混合自动机的新型抽象。该抽象结合了混凝土自动机A中的不同模式,其轨迹通过对称性相关,以抽象自动机B中的单个模式与单个模式相关联。抽象将抽象边缘的后卫和重置为对称性转换的守卫和混凝土边缘的重置。我们使用正向模拟关系(FSR)建立抽象的健全性,并提供几个示例。我们的抽象会导致更简单的自动机,这更适合正式分析和设计。我们说明了这种抽象在更快地进行可及性分析方面的应用,并实现了无界的时间安全验证。我们展示了B的固定点B的固定点可以用于回答A的可及性查询,即使后者访问了无限和无限的模式序列。我们介绍了抽象结构,固定点检查以及将抽象可及的集合转换为软件工具中混凝土的地图的实现。最后,我们在一系列实验中,展示了我们的方法比现有方法的优势,以及抽象的不同方面,包括遵循路线点的线性和非线性剂的场景。

A symmetry of a dynamical system is a map that transforms one trajectory to another trajectory. We introduce a new type of abstraction for hybrid automata based on symmetries. The abstraction combines different modes in a concrete automaton A, whose trajectories are related by symmetries, into a single mode in the abstract automaton B. The abstraction sets the guard and reset of an abstract edge to be the union of the symmetry-transformed guards and resets of the concrete edges. We establish the soundness of the abstraction using a forward simulation relation (FSR) and present several examples. Our abstraction results in simpler automata, that are more amenable for formal analysis and design. We illustrate an application of this abstraction in making reachability analysis faster and enabling unbounded time safety verification. We show how a fixed point of the reachable set computation of B can be used to answer reachability queries for A, even if the latter visits an infinite and unbounded sequences of modes. We present our implementation of the abstraction construction, the fixed point check, and the map that transforms abstract reachable sets to concrete ones in a software tool. Finally, we show the advantage of our method over existing ones, and the different aspects of our abstraction, in a sequence of experiments including scenarios with linear and nonlinear agents following waypoints.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源