论文标题

通过神经平均场动力学的网络扩散

Network Diffusions via Neural Mean-Field Dynamics

论文作者

He, Shushan, Zha, Hongyuan, Ye, Xiaojing

论文摘要

我们提出了一个基于神经平均场动力学的新型学习框架,以解决网络扩散的推理和估计问题。我们的新框架源自Mori-Zwanzig形式主义,以获得节点感染概率的确切演变,这使延迟微分方程具有由可学习的时间卷积运算符近似值的内存整体,从而产生了高度结构化和可解释的RNN。直接使用级联数据,我们的框架可以共同学习扩散网络的结构和感染概率的演变,这是对重要下游应用(例如影响最大化)的基石。还建立了参数学习与最佳控制之间的连接。实证研究表明,我们的方法对基础扩散网络模型的变化具有多功能性和鲁棒性,并且在合成和现实世界数据上的准确性和效率上都显着优于现有方法。

We propose a novel learning framework based on neural mean-field dynamics for inference and estimation problems of diffusion on networks. Our new framework is derived from the Mori-Zwanzig formalism to obtain an exact evolution of the node infection probabilities, which renders a delay differential equation with memory integral approximated by learnable time convolution operators, resulting in a highly structured and interpretable RNN. Directly using cascade data, our framework can jointly learn the structure of the diffusion network and the evolution of infection probabilities, which are cornerstone to important downstream applications such as influence maximization. Connections between parameter learning and optimal control are also established. Empirical study shows that our approach is versatile and robust to variations of the underlying diffusion network models, and significantly outperform existing approaches in accuracy and efficiency on both synthetic and real-world data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源