论文标题
在有限温度下,Anyonic Tonks-Girardeau气体的非平衡动力学
Non-equilibrium dynamics of the anyonic Tonks-Girardeau gas at finite temperature
论文作者
论文摘要
我们在有限温度下的非平衡动力学得出了ATAS等人的结果的确切描述。 [物理。 Rev. A 95,043622(2017)]对任意统计的情况。单粒子还原的密度矩阵表示为积分操作员的弗雷德霍姆小调,内核是有限温度下的一颗绿色的自由费米子的功能,并且统计参数确定了积分运算符前的常数。我们表明,使用NyStröm的方法对此表示的数值评估显着优于文献中存在的其他方法,而对于波函数的重叠,文献表达式没有分析表达式。我们说明了在两个实验相关的方案中,在任何人系统的动力学中存在的独特特征和新现象:牛顿量子的摇篮设置以及陷阱频率突然变化引发的呼吸振荡。
We derive an exact description of the non-equilibrium dynamics at finite temperature for the anyonic Tonks-Girardeau gas extending the results of Atas et al. [Phys. Rev. A 95, 043622 (2017)] to the case of arbitrary statistics. The one-particle reduced density matrix is expressed as the Fredholm minor of an integral operator with the kernel being the one-particle Green's function of free fermions at finite temperature and the statistics parameter determining the constant in front of the integral operator. We show that the numerical evaluation of this representation using Nyström's method significantly outperforms the other approaches present in the literature when there are no analytical expressions for the overlaps of the wave-functions. We illustrate the distinctive features and novel phenomena present in the dynamics of anyonic systems in two experimentally relevant scenarios: the quantum Newton's cradle setting and the breathing oscillations initiated by a sudden change of the trap frequency.