论文标题
无线电迷你大洛斯(Radio Mini-Halos)中的无线电和X射线连接:对HADRONIC模型的影响
Radio and X-ray connection in radio mini-halos: implications for hadronic models
论文作者
论文摘要
在放松的簇中观察到的无线电迷你光晕(MH)探测了数百个KPC尺度上的相对论颗粒的存在,超出了直接受到中央AGN影响的量表,但是仍在争论产生相对论电子的机制的性质。在这项工作中,我们探讨了MH样品中ICM的热和非热成分之间的联系,并研究了其对相对论电子起源的HADRONIC模型的影响。我们通过对无线电和X射线表面亮度进行点对点比较来研究热和非热连接。我们通过考虑通过蒙特卡洛链随机生成的网格的影响,扩展了通常应用于巨型无线电光环的方法。与巨型无线电光环的通常观察到的相反,我们发现样品中的迷你halos在无线电和X射线之间具有超级线性缩放,这表明相对论电子和磁场的峰值分布。我们使用无线电和X射线相关性来限制HADRONIC模型的物理参数,并将模型预测与当前观测值进行了比较。具体而言,我们专注于一个模型,其中中央AGN注入宇宙射线并在ICM中产生次要的模型,我们假设湍流重新加速的作用可以忽略不计。该模型使我们能够在$ \ sim10^{44-46} $ erg s $^{ - 1} $的范围内约束AGN宇宙射线光度,而中央磁场则在10-40 $ $ g。假设这些模型参数并不违反Fermi-Lat望远镜设置的$γ$ -Ray扩散排放发射的上限。现在需要进一步的研究来探索这些大磁场在法拉第旋转研究中的一致性,并研究二次电子与ICM湍流之间的相互作用。
The radio mini halos (MH) observed in relaxed clusters probe the presence of relativistic particles on scales of hundreds of kpc, beyond the scales directly influenced by the central AGN, but the nature of the mechanism that produces the relativistic electrons is still debated. In this work we explore the connection between thermal and non-thermal components of the ICM in a sample of MH and we study its implications for hadronic models for the origin of the relativistic electrons. We studied the thermal and non-thermal connection by carrying out a point-to-point comparison of the radio and the X-ray surface brightness. We extended the method generally applied to giant radio halos by considering the effects of a grid randomly generated through a Monte Carlo chain. Contrary to what is generally observed for giant radio halos, we find that the mini-halos in our sample have super-linear scaling between radio and X-rays, which suggests a peaked distribution of relativistic electrons and magnetic field. We used the radio and X-ray correlation to constrain the physical parameters of a hadronic model and we compared the model predictions with current observations. Specifically, we focus on a model where cosmic rays are injected by the central AGN and they generate secondaries in the ICM, and we assume that the role of turbulent re-acceleration is negligible. This model allows us to constrain the AGN cosmic ray luminosity in the range $\sim10^{44-46}$ erg s$^{-1}$ and the central magnetic field in the range 10-40 $μ$G. The resulting $γ$-ray fluxes calculated assuming these model parameters do not violate the upper limits on $γ$-ray diffuse emission set by the Fermi-LAT telescope. Further studies are now required to explore the consistency of these large magnetic fields with Faraday rotation studies and to study the interplay between the secondary electrons and the ICM turbulence.