论文标题
寻找戈登身份的新成员
Looking for a new member of Gordon's identities
论文作者
论文摘要
我们为“戈登身份”中出现的分区的安德鲁斯递归公式提供了交换的代数观点,这是罗杰斯·拉马努扬身份的概括。使用这种方法和差异理想,我们猜想了一个延伸戈登身份的分区身份家族。这个家庭由R> = 2索引。我们证明了r = 2和r = 3的猜想。
We give a commutative algebra viewpoint on Andrews recursive formula for the partitions appearing in "Gordon's identities", which are a generalization of Rogers-Ramanujan identities. Using this approach and differential ideals we conjecture a family of partition identities which extend Gordon's identities. This family is indexed by r >=2. We prove the conjecture for r=2 and r=3.