论文标题

Kähler-Einstein指标,有规定的奇异性在Fano歧管上

Kähler-Einstein metrics with prescribed singularities on Fano manifolds

论文作者

Trusiani, Antonio

论文摘要

考虑到Fano歧管$(x,ω)$,我们开发了一种变异方法来分析表征具有规定奇异性的Kähler-Einstein指标的存在,假设这些奇异性可以通过代数近似。此外,我们在一组规定的奇点上定义了$α_Ω$,该功能概括了Tian的$α$ invariant,这表明其上层集合$ \ {α_Ω(\ cdot)> \ frac {n} {n} {n+1} {n+1} \} $由kähller-noce of the Incein of the subirection in t offeriase i.echhler-noce in of。承认Kähler-Einstein指标。特别是,我们证明许多$ k $稳定的流形承认所有可能的Kähler-Einstein指标都有规定的奇异性。相反,我们表明,在非平凡的处方奇异点(或其他条件)上$α$ invariant功能的足够阳性意味着存在真正的Kähler-Einstein指标。最后,通过一种连续性方法,我们还证明了Kähler-Einstein指标在完全有序的处方奇异点的曲线上具有强烈的连续性,当时相对构成群体是离散的。

Given a Fano manifold $(X,ω)$ we develop a variational approach to characterize analytically the existence of Kähler-Einstein metrics with prescribed singularities, assuming that these singularities can be approximated algebraically. Moreover, we define a function $α_ω$ on the set of prescribed singularities which generalizes Tian's $α$-invariant, showing that its upper level set $\{α_ω(\cdot)>\frac{n}{n+1}\}$ produces a subset of the Kähler-Einstein locus, i.e. of the locus given by all prescribed singularities that admit Kähler-Einstein metrics. In particular, we prove that many $K$-stable manifolds admit all possible Kähler-Einstein metrics with prescribed singularities. Conversely, we show that enough positivity of the $α$-invariant function at non-trivial prescribed singularities (or other conditions) implies the existence of genuine Kähler-Einstein metrics. Finally, through a continuity method, we also prove the strong continuity of Kähler-Einstein metrics on curves of totally ordered prescribed singularities when the relative automorphism groups are discrete.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源