论文标题

分级身份与上三角矩阵代数

Graded identities with involution for the algebra of upper triangular matrices

论文作者

Diniz, Diogo, Ramos, Alex

论文摘要

令$ f $为特征零字段。我们证明,如果在$ ut_m(f)$上进行分级的级别承认分级互动,那么该评分是$ \ mathbb {z}^{\ lfloor \ frac {m} {m} {2} {2} \ rfloor} $的级别,并在$ ut_m(f)$上毕业或等同于毕业。 $ ut_m(f)$。 $(\ mathbb {z}^{\ lfloor \ frac {m} {2} {2} \ rfloor},\ ast)$ - 身份的有限基础,以进行反射和符号互动以及符号互动的增长$(\ Mathbb {z}^{\ lfloor \ frac {m} {2} {2} \ rfloor},\ ast)$ - codimensions。结果,我们证明,对于$ ut_m(f)$的任何$ g $ - $(g,\ ast)$ - 如果$ m $均匀,$ m $或$ m $或$ m $或$ m+1 $,则$ m $是$ m $。对于代数$ _3(f)$,最多等同于两个非平凡的等级,可以接纳分级相关性:规范$ \ mathbb {z} $ - 分级和$ \ mathbb {z} _2 _2 _2 $ - 级别的分级为$(0,1,1,1,1,0)$。我们确定$(\ Mathbb {z} _2,\ ast)$ - 身份的基础,并证明该指数为$ 3 $。因此,我们得出的结论是,$ ut_3(f)$的普通$ \ ast $ - expent是$ 3 $。

Let $F$ be a field of characteristic zero. We prove that if a group grading on $UT_m(F)$ admits a graded involution then this grading is a coarsening of a $\mathbb{Z}^{\lfloor\frac{m}{2}\rfloor}$-grading on $UT_m(F)$ and the graded involution is equivalent to the reflection or symplectic involution on $UT_m(F)$. A finite basis for the $(\mathbb{Z}^{\lfloor\frac{m}{2}\rfloor},\ast)$-identities is exhibited for the reflection and symplectic involutions and the asymptotic growth of the $(\mathbb{Z}^{\lfloor\frac{m}{2}\rfloor},\ast)$-codimensions is determined. As a consequence we prove that for any $G$-grading on $UT_m(F)$ and any graded involution the $(G,\ast)$-exponent is $m$ if $m$ is even and either $m$ or $m+1$ if $m$ is odd. For the algebra $UT_3(F)$ there are, up to equivalence, two non-trivial gradings that admit a graded involution: the canonical $\mathbb{Z}$-grading and the $\mathbb{Z}_2$-grading induced by $(0,1,0)$. We determine a basis for the $(\mathbb{Z}_2,\ast)$-identities and prove that the exponent is $3$. Hence we conclude that the ordinary $\ast$-exponent for $UT_3(F)$ is $3$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源