论文标题

强大的联邦推荐系统

Robust Federated Recommendation System

论文作者

Chen, Chen, Zhang, Jingfeng, Tung, Anthony K. H., Kankanhalli, Mohan, Chen, Gang

论文摘要

联合推荐系统可以提供良好的性能,而无需收集用户的私人数据,从而使其具有吸引力。但是,它们容易受到低成本中毒攻击的影响,可以降低其表现。在本文中,我们开发了一种新颖的联邦推荐技术,该技术与拜占庭客户占上风的中毒攻击非常强大。我们认为,拜占庭检测的关键是监视客户端模型参数的梯度。然后,我们提出了一个强大的学习策略,其中中央服务器不使用模型参数,而是利用梯度来过滤拜占庭式客户端。从理论上讲,我们通过提出的对拜占庭式弹性的定义来证明我们的强大学习策略是合理的。从经验上讲,我们在联合建议系统中使用四个数据集确认了我们强大的学习策略的功效。

Federated recommendation systems can provide good performance without collecting users' private data, making them attractive. However, they are susceptible to low-cost poisoning attacks that can degrade their performance. In this paper, we develop a novel federated recommendation technique that is robust against the poisoning attack where Byzantine clients prevail. We argue that the key to Byzantine detection is monitoring of gradients of the model parameters of clients. We then propose a robust learning strategy where instead of using model parameters, the central server computes and utilizes the gradients to filter out Byzantine clients. Theoretically, we justify our robust learning strategy by our proposed definition of Byzantine resilience. Empirically, we confirm the efficacy of our robust learning strategy employing four datasets in a federated recommendation system.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源