论文标题
算术进行大型模量III的素数:均匀的残留类别
Primes in arithmetic progressions to large moduli III: Uniform residue classes
论文作者
论文摘要
我们证明了算术进展中素数的新平均值定理,以大于$ x^{1/2} $,将Bommbieri-Vinogradov定理扩展到大小$ x^{1/2+δ} $的Moduli,这些模量很大。这些估计值的主要特征是,相对于所考虑的残基类别,它们完全均匀,这与以前关于算术进展的素数的作品不同。
We prove new mean value theorems for primes in arithmetic progressions to moduli larger than $x^{1/2}$, extending the Bombieri-Vinogradov theorem to moduli of size $x^{1/2+δ}$ which have conveniently sized divisors. The main feature of these estimates is that they are completely uniform with respect to the residue classes considered, unlike previous works on primes in arithmetic progressions to large moduli.