论文标题
具有空间白噪声电位和第四阶非线性的二维非线性schrödinger方程
Two dimensional nonlinear Schrödinger equation with spatial white noise potential and fourth order nonlinearity
论文作者
论文摘要
我们考虑在$ \ t^2 $上具有乘法空间白噪声和立方和四分之一之间的非线性的NLS。我们证明了对适当正规化和重新归一化近似方程的家族的解决方案的全球存在,独特性和收敛性。特别是,我们在立方和亚立方体的环境中扩展了A. debussche和H. Weber的先前结果。
We consider NLS on $\T^2$ with multiplicative spatial white noise and nonlinearity between cubic and quartic. We prove global existence, uniqueness and convergence almost surely of solutions to a family of properly regularized and renormalized approximating equations. In particular we extend a previous result by A. Debussche and H. Weber available in the cubic and sub-cubic setting.