论文标题

学习对学习的个性化人类活动识别模型

Learning-to-Learn Personalised Human Activity Recognition Models

论文作者

Wijekoon, Anjana, Wiratunga, Nirmalie

论文摘要

人类活动识别〜(HAR)是人类运动的分类,使用一个或多个传感器作为可穿戴设备或嵌入在环境中的捕获〜(例如,深度摄像头,压力垫)。最新的HAR方法依靠访问大量标记的数据来训练具有许多可火车参数的深度体系结构。当要创建对人类运动中个人细微差别敏感的模型时,这会变得过于敏锐,在执行练习时明确存在。此外,不可能收集培训数据以涵盖目标人群中的所有可能受试者。因此,对于HAR研究,学习个性化模型仍然是一个有趣的挑战。我们提出了一种学习学习HAR的个性化HAR模型的元学习方法;期望最终用户需要提供一些标记的数据,但可以从通用元模型的快速改编中受益。我们介绍了两种算法,个性化的MAML和个性化的关系网络,灵感来自现有的元学习算法,但针对学习健康和福祉应用中任何人的学习HAR模型进行了优化。一项比较研究表明,针对最先进的深度学习算法以及多个HAR领域中的少量元学习算法的性能改善。

Human Activity Recognition~(HAR) is the classification of human movement, captured using one or more sensors either as wearables or embedded in the environment~(e.g. depth cameras, pressure mats). State-of-the-art methods of HAR rely on having access to a considerable amount of labelled data to train deep architectures with many train-able parameters. This becomes prohibitive when tasked with creating models that are sensitive to personal nuances in human movement, explicitly present when performing exercises. In addition, it is not possible to collect training data to cover all possible subjects in the target population. Accordingly, learning personalised models with few data remains an interesting challenge for HAR research. We present a meta-learning methodology for learning to learn personalised HAR models for HAR; with the expectation that the end-user need only provides a few labelled data but can benefit from the rapid adaptation of a generic meta-model. We introduce two algorithms, Personalised MAML and Personalised Relation Networks inspired by existing Meta-Learning algorithms but optimised for learning HAR models that are adaptable to any person in health and well-being applications. A comparative study shows significant performance improvements against the state-of-the-art Deep Learning algorithms and the Few-shot Meta-Learning algorithms in multiple HAR domains.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源