论文标题
近晶体的批判性
Jamming Criticality of Near-Crystals
论文作者
论文摘要
我们在等静力干扰点上报告了最小聚糖晶体的临界特性,2D中的六边形和以3维为中心的立方体的临界特性。力和间隙分布显示小值的幂律尾巴。状态(VDOS)的振动密度是平坦的。扩展软盘和VDOS的力的缩放行为是通用的,并且与无限维平均场理论和最大无定形堆积符合到2维的最大无定形填料一致。近晶体的局部软盘模式的差距和力的分布似乎是非普遍的。一小部分正常模式在低频下表现出部分定位。大多数正常模式被定位为特征,表现出特征性的反参与率随频率的比例。填充分数和秩序与多分散性线性和四次衰变时的腐烂,直到最大的无定形状态。
We report on the critical properties of minimaly-polydisperse crystals, hexagonal in 2d and face-centered cubic in 3 dimensions, at the isostatic jamming point. The force and gap distributions display power-law tails for small values. The vibrational density of states (VDOS) is flat. The scaling behavior of forces of extended floppy modes and the VDOS are universal and in agreement with an infinite-dimensional mean-field theory and maximally amorphous packings down to 2 dimensions. The distributions of gaps and forces of localized floppy modes of near-crystals appear non-universal. A small fraction of normal modes exhibit partial localization at low frequency. The majority of normal modes is delocalized exhibiting a characteristic inverse participation ratio scaling with frequency. The packing fraction and order at jamming decay linearly and quadratically respectively with polydispersity down to the maximally amorphous state.