论文标题

通过机器学习测试赃物猜想

Testing Swampland Conjectures with Machine Learning

论文作者

Bizet, Nana Cabo, Damian, Cesar, Loaiza-Brito, Oscar, Peña, Damián Kaloni Mayorga, Montañez-Barrera, J. A.

论文摘要

我们考虑在各向同性圆环$ t^6 $上通过几何和非几何通量螺纹上的类型IIB压缩。对于此特定的设置,我们应用了监督的机器学习技术,即与遗传算法相连的人工神经网络,以获得至少一个关键点的标量势能获得的六万超过600万通量构型。我们观察到,根据精制的De Sitiver猜想,没有大量模量和较小的真空能量以及带有小速度质量和较大能量的不稳定的DS真空吸尘器,以及不稳定的DS真空吸尘器。此外,通过考虑通量之间的层次结构,我们观察到,对真空能量和模量质量的扰动溶液受到偏爱,并且最较轻的模量质量比相应的ADS真空尺度大得多。最后,我们对随机矩阵理论应用一些结果来得出结论,从该字符串设置得出的最可能的质谱是满足精致的DE Sitter和ADS量表的猜想。

We consider Type IIB compactifications on an isotropic torus $T^6$ threaded by geometric and non geometric fluxes. For this particular setup we apply supervised machine learning techniques, namely an artificial neural network coupled to a genetic algorithm, in order to obtain more than sixty thousand flux configurations yielding to a scalar potential with at least one critical point. We observe that both stable AdS vacua with large moduli masses and small vacuum energy as well as unstable dS vacua with small tachyonic mass and large energy are absent, in accordance to the Refined de Sitter Conjecture. Moreover, by considering a hierarchy among fluxes, we observe that perturbative solutions with small values for the vacuum energy and moduli masses are favored, as well as scenarios in which the lightest modulus mass is much greater than the corresponding AdS vacuum scale. Finally we apply some results on Random Matrix Theory to conclude that the most probable mass spectrum derived from this string setup is that satisfying the Refined de Sitter and AdS scale conjectures.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源