论文标题
一种新型的融合python应用数据挖掘技术评估空气磁性数据集
A novel fusion Python application of data mining techniques to evaluate airborne magnetic datasets
论文作者
论文摘要
设计和实施了一种新型的数据挖掘技术(DMT)的融合python应用,以定位,识别和描述源岩石的地下结构模式(SSP),以构成研究区域的感兴趣特征。机器学习工具(MLT)的技术有助于定义磁异常(MAS)岩石以及这些地下源岩石特征的各个深度。主要目的是使用直接的DMT来定位宿主矿化感兴趣的磁异常特征。通过结合Oasis Montaj \ c {OpyRight} 2014源参数参数成像功能的应用,可以充分覆盖所需的地理参考辐射数据,从而充分涵盖了SSP的划定。相关性的基本滤波技术使用数据还原的基本过滤技术来提高信噪比(S/N)比率,因此自动确定在执行DMT应用之前,从网格地理参考的空中磁性数据集中确定了与各种全面特征的深度。地质源岩石模型(GSRM)(即岩石触点,堤坝)作为基于其结构指数(SI)值的划定特征。异常是垂直定向的,几乎没有任何无关的特征,并且通常在NNE-SSW和NE-SW方向上排列。 DMT方法表明,通过融合该地区的地下引力结构特征(SGSF),在地质时间尺度(GTS)上控制SSP和地面地层地层(GSS)。 DMT促进了这些地下地质源岩石特征的深度,最大深度约为1.277 km,使用3x3窗口尺寸来映射感兴趣的隐藏特征。
A novel fusion python application of data mining techniques (DMT) was designed and implemented to locate, identify, and delineate the subsurface structural pattern (SSP) of source rocks for the features of interest underlain the study area. The techniques of machine learning tools (MLT) helped to define magnetic anomaly source (MAS) rock and the various depths of these subsurface source rock features. The principal objective is to use straightforward DMT to locate magnetic anomaly features of interest that host mineralization. The required geo-referenced radiometric data, which facilitated the delineation of SSP, were sufficiently covered by combining the application of the Oasis Montaj\c{opyright} 2014 source parameter imaging functions. Relevance basic filtering techniques of data reduction were used to improve the signal-to-noise (S/N) ratio and hence automatically determine depths to the various engrossed features from gridded geo-referenced airborne magnetic datasets before the DMT application was performed. Geological source rock models (GSRM) (i.e., rock contacts, dykes) served as the delineated features based on their structural index (SI) values. The anomalies were perpendicularly oriented, with few inconsequential nonvertical features, and all were generally aligned in NNE-SSW and NE-SW directions. The DMT approach showed that magnetic anomaly patterns (MAP) control the SSP and the ground surface stratigraphy (GSS) on a geological time-scale (GTS) by fusing the subsurface gravitational structural features (SGSF) in the area. The DMT facilitated the determination of depths to these subsurface geological source rock features with a maximum depth of approximately 1.277 km using a 3x3 window size to map the concealed features of interest.