论文标题
理解和解决图形卷积网络中的性能退化
Understanding and Resolving Performance Degradation in Graph Convolutional Networks
论文作者
论文摘要
图形卷积网络(GCN)堆叠几层,每一层都执行传播操作(Prop)和转换操作(TRAN),用于在图形结构数据上学习节点表示。尽管强大,但是当模型深入时,GCN往往会遭受性能下降。以前的工作着重于研究和减轻此问题的道具,但几乎没有研究Trans的作用。在这项工作中,我们通过实验研究仅堆叠反式或道具的工作方式来研究GCN的性能降解。我们发现,Trans对性能下降产生了显着贡献,甚至超过道具,并且它们倾向于扩大GCN中的节点特征差异,从而导致差异炎症,我们将其识别为导致性能下降的关键因素。在此类观察中,我们提出了一种称为节点归一化(NodeNorm)的方差控制技术,该技术使用自己的标准偏差来扩展每个节点的特征。实验结果证明了结节对解决GCN的性能降解的有效性。具体而言,在需要深层模型的情况下,它可以超过浅GCN,并在6个基准数据集上使用浅的结果获得可比的结果。 NodeNorm是一种通用的插件,可以很好地推广到其他GNN架构。代码可在https://github.com/miafei/nodenorm上公开获取。
A Graph Convolutional Network (GCN) stacks several layers and in each layer performs a PROPagation operation (PROP) and a TRANsformation operation (TRAN) for learning node representations over graph-structured data. Though powerful, GCNs tend to suffer performance drop when the model gets deep. Previous works focus on PROPs to study and mitigate this issue, but the role of TRANs is barely investigated. In this work, we study performance degradation of GCNs by experimentally examining how stacking only TRANs or PROPs works. We find that TRANs contribute significantly, or even more than PROPs, to declining performance, and moreover that they tend to amplify node-wise feature variance in GCNs, causing variance inflammation that we identify as a key factor for causing performance drop. Motivated by such observations, we propose a variance-controlling technique termed Node Normalization (NodeNorm), which scales each node's features using its own standard deviation. Experimental results validate the effectiveness of NodeNorm on addressing performance degradation of GCNs. Specifically, it enables deep GCNs to outperform shallow ones in cases where deep models are needed, and to achieve comparable results with shallow ones on 6 benchmark datasets. NodeNorm is a generic plug-in and can well generalize to other GNN architectures. Code is publicly available at https://github.com/miafei/NodeNorm.