论文标题
DeepSIP:将IA型IA超新星光谱链接到光度量与深度学习
deepSIP: Linking Type Ia Supernova Spectra to Photometric Quantities with Deep Learning
论文作者
论文摘要
我们介绍{\ tt deepSip}(超新星IA参数的深度学习),这是一种用于测量相位的软件包,并且首次使用深学习 - 从光谱中使用深度学习的IA型超新星(SN〜IA)的光曲线形状。 {\ tt DeepSip}的核心由三个卷积神经网络组成,这些卷积神经网络在所有公共可公开可用的低红色sn〜ia光谱中的相当一部分训练,我们在其上仔细地耦合了光图衍生的量。我们描述了光谱数据集和光度计数据集的积累,为确保质量而进行的切割以及我们用于拟合光曲线的标准化技术。这些考虑因素产生了2754个光谱,具有光学特征的相和光曲线形状。尽管这样的样本在SN社区中很重要,但按照深入学习的标准,它通常具有数百万甚至数十亿个免费参数。因此,我们介绍了一种数据提升策略,该策略有意义地增加了我们为训练分配的子集的大小,同时优先考虑模型鲁棒性和望远镜不可知论。我们通过将模型部署在训练和超参数选择过程中看不见的样本中,发现模型〜i标识具有$ -10 $和18 \,d和光曲线形状之间的光谱,由$ΔM_{15} $,0.85至1.55 \,MAG介绍94.6 \%的光谱。对于那些确实属于上述区域内的光谱 - $Δm_{15} $空间,模型〜II II预测具有1.00 \,D和模型〜III的根平方误差(RMSE)的相位,预测$ΔM_{15} $值,其RMSE为0.068 \,mag,mag,mag,mag,mag。
We present {\tt deepSIP} (deep learning of Supernova Ia Parameters), a software package for measuring the phase and -- for the first time using deep learning -- the light-curve shape of a Type Ia supernova (SN~Ia) from an optical spectrum. At its core, {\tt deepSIP} consists of three convolutional neural networks trained on a substantial fraction of all publicly-available low-redshift SN~Ia optical spectra, onto which we have carefully coupled photometrically-derived quantities. We describe the accumulation of our spectroscopic and photometric datasets, the cuts taken to ensure quality, and our standardised technique for fitting light curves. These considerations yield a compilation of 2754 spectra with photometrically characterised phases and light-curve shapes. Though such a sample is significant in the SN community, it is small by deep-learning standards where networks routinely have millions or even billions of free parameters. We therefore introduce a data-augmentation strategy that meaningfully increases the size of the subset we allocate for training while prioritising model robustness and telescope agnosticism. We demonstrate the effectiveness of our models by deploying them on a sample unseen during training and hyperparameter selection, finding that Model~I identifies spectra that have a phase between $-10$ and 18\,d and light-curve shape, parameterised by $Δm_{15}$, between 0.85 and 1.55\,mag with an accuracy of 94.6\%. For those spectra that do fall within the aforementioned region in phase--$Δm_{15}$ space, Model~II predicts phases with a root-mean-square error (RMSE) of 1.00\,d and Model~III predicts $Δm_{15}$ values with an RMSE of 0.068\,mag.