论文标题

Laplacian的$ l^2 $频谱的底部在本地对称空间上

Bottom of the $L^2$ spectrum of the Laplacian on locally symmetric spaces

论文作者

Anker, Jean-Philippe, Zhang, Hong-Wei

论文摘要

我们根据适当的Poincaré系列的关键指数来估计Laplacian在本地对称空间上的$ L^2 $频谱的底部。我们的主要结果是,由于Elstrodt,Patterson,Sullivan和Corlette的表征,较高的等级类似物。它改善了Leuzinger和Weber在更高排名的先前结果。

We estimate the bottom of the $L^2$ spectrum of the Laplacian on locally symmetric spaces in terms of the critical exponents of appropriate Poincaré series. Our main result is the higher rank analog of a characterization due to Elstrodt, Patterson, Sullivan and Corlette in rank one. It improves upon previous results obtained by Leuzinger and Weber in higher rank.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源