论文标题

变形攻击检测 - 数据库,评估平台和基准测试

Morphing Attack Detection -- Database, Evaluation Platform and Benchmarking

论文作者

Raja, Kiran, Ferrara, Matteo, Franco, Annalisa, Spreeuwers, Luuk, Batskos, Illias, Gomez-Barrero, Florens de Wit Marta, Scherhag, Ulrich, Fischer, Daniel, Venkatesh, Sushma, Singh, Jag Mohan, Li, Guoqiang, Bergeron, Loïc, Isadskiy, Sergey, Ramachandra, Raghavendra, Rathgeb, Christian, Frings, Dinusha, Seidel, Uwe, Knopjes, Fons, Veldhuis, Raymond, Maltoni, Davide, Busch, Christoph

论文摘要

变形攻击对面部识别系统(FRS)构成了严重威胁。尽管最近的工作中报告了许多进步,但我们注意到严重的开放问题,例如独立的基准测试,对年龄,性别,种族的普遍性挑战和考虑不足的考虑。变形攻击检测(MAD)算法通常很容易受到泛化挑战,因为它们依赖于数据库。现有的数据库,主要是半公共性质,在种族,各种变形过程和后处理管道方面缺乏多样性。此外,它们不能反映自动边界控制(ABC)的现实操作场景,也没有提供对看不见数据的疯狂测试的基础,以便基于算法的鲁棒性。在这项工作中,我们提出了一个新的隔离数据集,以促进MAD的进步,在该数据中可以在未见数据上测试算法,以更好地概括。新建的数据集由来自各种种族,年龄段和两个性别的150名受试者的面部图像组成。为了挑战现有的MAD算法,变形的图像是由仔细的主题预先选择的,并从贡献图像中创建,并在后期处理以去除变形文物。这些图像也被打印和扫描以删除所有数字提示,并模拟对MAD算法的现实挑战。此外,我们提出了一个新的在线评估平台,以测试隔离数据的算法。使用平台,我们可以基准基准变体检测性能并研究概括能力。这项工作还对隔离数据的各种子集进行了详细分析,并大纲对MAD研究的未来方向提出了挑战。

Morphing attacks have posed a severe threat to Face Recognition System (FRS). Despite the number of advancements reported in recent works, we note serious open issues such as independent benchmarking, generalizability challenges and considerations to age, gender, ethnicity that are inadequately addressed. Morphing Attack Detection (MAD) algorithms often are prone to generalization challenges as they are database dependent. The existing databases, mostly of semi-public nature, lack in diversity in terms of ethnicity, various morphing process and post-processing pipelines. Further, they do not reflect a realistic operational scenario for Automated Border Control (ABC) and do not provide a basis to test MAD on unseen data, in order to benchmark the robustness of algorithms. In this work, we present a new sequestered dataset for facilitating the advancements of MAD where the algorithms can be tested on unseen data in an effort to better generalize. The newly constructed dataset consists of facial images from 150 subjects from various ethnicities, age-groups and both genders. In order to challenge the existing MAD algorithms, the morphed images are with careful subject pre-selection created from the contributing images, and further post-processed to remove morphing artifacts. The images are also printed and scanned to remove all digital cues and to simulate a realistic challenge for MAD algorithms. Further, we present a new online evaluation platform to test algorithms on sequestered data. With the platform we can benchmark the morph detection performance and study the generalization ability. This work also presents a detailed analysis on various subsets of sequestered data and outlines open challenges for future directions in MAD research.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源