论文标题
Hermitian Yang-Mills在回调捆绑包上连接
Hermitian Yang-Mills connections on pullback bundles
论文作者
论文摘要
我们研究了回调捆绑包上的Hermitian Yang-mills连接,相对于与固定纤维的全态浸入的绝热类别有关。根据对约旦持有人过滤的分级对象的一些技术假设,我们获得了一个必要和足够的标准,即何时严格的半介子套件的回调将在淹没底部的交叉点上带有Hermitian Yang-Mills连接。与经典的Donaldson-Uhlenbeck-yau信函一起,我们推断出稳定(不稳定)束的回调对于绝热类别仍然稳定(不稳定),并解决半稳定的案例。
We investigate hermitian Yang-Mills connections on pullback bundles with respect to adiabatic classes on the total space of holomorphic submersions with connected fibres. Under some technical assumptions on the graded object of a Jordan-Holder filtration, we obtain a necessary and sufficient criterion for when the pullback of a strictly semistable vector bundle will carry an hermitian Yang-Mills connection, in terms of intersection numbers on the base of the submersion. Together with the classical Donaldson-Uhlenbeck-Yau correspondence, we deduce that the pullback of a stable (resp. unstable) bundle remains stable (resp. unstable) for adiabatic classes, and settle the semi-stable case.