论文标题

不可综合系统的定量行为(III)

Quantitative behavior of non-integrable systems (III)

论文作者

Beck, J., Chen, W. W. L., Yang, Y.

论文摘要

部分(III)的主要目的是在polysquares中给出明确的大地测量和台球轨道,这些轨道表现出时间定量密度。在许多情况下,我们甚至可以建立一种称为超级密度的最佳时间形式。我们还研究了无限的平坦动力学系统,包括周期性的和上的静态系统,其中包括无限多质量区域的台球。特别是,即使对于上的系统,我们也可以证明时间量化密度。在光学方面,台球情况相当于结果,即显式的单射线可以从本质上照亮整个无限的多质量区域,而边界充当镜子。实际上,我们表明,相同的初始方向可以适用于此类无限系统的不可数家庭。

The main purpose of part (III) is to give explicit geodesics and billiard orbits in polysquares that exhibit time-quantitative density. In many instances, we can even establish a best possible form of time-quantitative density called superdensity. We also study infinite flat dynamical systems, both periodic and aperiodic, which include billiards in infinite polysquare regions. In particular, we can prove time-quantitative density even for aperiodic systems. In terms of optics the billiard case is equivalent to the result that an explicit single ray of light can essentially illuminate a whole infinite polysquare region with reflecting boundary acting as mirrors. In fact, we show that the same initial direction can work for an uncountable family of such infinite systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源