论文标题

关于Turán车轮不交互式联盟的注释

A note on the Turán number of disjoint union of wheels

论文作者

Xiao, Chuanqi, Zamora, Oscar

论文摘要

图$ h $,$ \ text {ex}(n,h)$的图turán是$ n $ vertices上图中没有$ h $作为子图的图形的最大边数。 Wheel $ W_n $是通过将单个顶点连接到周期$ C_ {N-1} $的所有顶点形成的$ N $ VERTEX图。令$ mw_ {2k+1} $表示$ m $ pertex-disjoint副本$ w_ {2k+1} $。对于足够大的$ n $,我们确定$ mw_ {2k+1} $的Turán号码和所有极端图。我们还为$ w^{h}提供Turán号码和所有极端图:= \ bigCup \ limits^m_ {i = 1} w_ {k_i} $当$ n $足够大,即使车轮的数量为$ h $ h $ and $ h> 0 $。

The Turán number of a graph $H$, $\text{ex}(n,H)$, is the maximum number of edges in a graph on $n$ vertices which does not have $H$ as a subgraph. A wheel $W_n$ is an $n$-vertex graph formed by connecting a single vertex to all vertices of a cycle $C_{n-1}$. Let $mW_{2k+1}$ denote the $m$ vertex-disjoint copies of $W_{2k+1}$. For sufficiently large $n$, we determine the Turán number and all extremal graphs for $mW_{2k+1}$. We also provide the Turán number and all extremal graphs for $W^{h}:=\bigcup\limits^m_{i=1}W_{k_i}$ when $n$ is sufficiently large, where the number of even wheels is $h$ and $h>0$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源