论文标题

伪巴约斯因子在正向和反回归问题中的收敛性

Convergence of Pseudo-Bayes Factors in Forward and Inverse Regression Problems

论文作者

Chatterjee, Debashis, Bhattacharya, Sourabh

论文摘要

在有关模型比较的贝叶斯文献中,贝叶斯因素起着主导作用。在经典的统计文献中,模型选择标准通常是设计的使用交叉验证思想。融合贝叶斯因素和交叉验证的盖斯和Eddy(1979)的思想创造了伪bayes因子。交叉验证的使用灌输了贝叶斯因素的几种理论优势,计算简单性和数值稳定性,因为整个数据集的边际密度被单个数据点的交叉验证密度所取代。 但是,与贝叶斯因素相比,相对于理论研究和实际应用,伪巴约斯因素的普及仍然可以忽略不计。在本文中,我们在一般的设置下,几乎确定了大型样本的伪巴约斯因素的指数收敛,该设置由依赖的数据和模型错误指定。我们特别关注在正向和逆上下文中的一般参数和非参数回归设置。 我们用各种示例说明了我们的理论结果,提供了明确的计算。我们还通过在泊松记录回归和几何logit和概率回归的小样本情况下进行模拟实验来补充渐近理论,并解决了可变选择问题。我们考虑由高斯工艺为我们的目的建模的线性和非参数回归。我们的仿真结果提供了对伪巴约斯因素在正向和反向设置中使用的非常有趣的见解。

In the Bayesian literature on model comparison, Bayes factors play the leading role. In the classical statistical literature, model selection criteria are often devised used cross-validation ideas. Amalgamating the ideas of Bayes factor and cross-validation Geisser and Eddy (1979) created the pseudo-Bayes factor. The usage of cross-validation inculcates several theoretical advantages, computational simplicity and numerical stability in Bayes factors as the marginal density of the entire dataset is replaced with products of cross-validation densities of individual data points. However, the popularity of pseudo-Bayes factors is still negligible in comparison with Bayes factors, with respect to both theoretical investigations and practical applications. In this article, we establish almost sure exponential convergence of pseudo-Bayes factors for large samples under a general setup consisting of dependent data and model misspecifications. We particularly focus on general parametric and nonparametric regression setups in both forward and inverse contexts. We illustrate our theoretical results with various examples, providing explicit calculations. We also supplement our asymptotic theory with simulation experiments in small sample situations of Poisson log regression and geometric logit and probit regression, additionally addressing the variable selection problem. We consider both linear and nonparametric regression modeled by Gaussian processes for our purposes. Our simulation results provide quite interesting insights into the usage of pseudo-Bayes factors in forward and inverse setups.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源