论文标题

增量描述符:基于更改的位置表示,以鲁棒视觉定位

Delta Descriptors: Change-Based Place Representation for Robust Visual Localization

论文作者

Garg, Sourav, Harwood, Ben, Anand, Gaurangi, Milford, Michael

论文摘要

视觉场所的识别是具有挑战性的,因为有很多因素会导致出现变化的地方,从昼夜周期到季节性变化再到大气条件。近年来,已经开发了各种方法来应对这一挑战,包括深度学习图像描述符,域翻译和顺序滤波,所有这些都具有不足,包括一般性和速度敏感性。在本文中,我们提出了一个新颖的描述符,该描述符来自跟踪随着时间的流逝的任何学习全局描述符的变化,称为Delta描述符。 Delta描述符通过考虑沿路线观察到的各个地方的时间差异,以无监督的方式减轻原始描述符匹配空间中引起的偏移。与所有其他方法一样,增量描述符具有框架至基础上的挥发性 - 可以通过将它们与顺序过滤方法结合来​​克服。使用两个基准数据集,我们首先隔离地展示了增量描述符的高性能,然后与基于序列的匹配结合使用新的最新性能。我们还提出了结果,证明了与现有技术相比,使用四种不同的基础描述符类型的方法以及三角洲描述符的另外两个有益特性:它们对摄像机运动的变化的固有鲁棒性增加,并且随着降低的降低而降低了性能降解速率。源代码可在https://github.com/oravus/deltadescriptors上提供。

Visual place recognition is challenging because there are so many factors that can cause the appearance of a place to change, from day-night cycles to seasonal change to atmospheric conditions. In recent years a large range of approaches have been developed to address this challenge including deep-learnt image descriptors, domain translation, and sequential filtering, all with shortcomings including generality and velocity-sensitivity. In this paper we propose a novel descriptor derived from tracking changes in any learned global descriptor over time, dubbed Delta Descriptors. Delta Descriptors mitigate the offsets induced in the original descriptor matching space in an unsupervised manner by considering temporal differences across places observed along a route. Like all other approaches, Delta Descriptors have a shortcoming - volatility on a frame to frame basis - which can be overcome by combining them with sequential filtering methods. Using two benchmark datasets, we first demonstrate the high performance of Delta Descriptors in isolation, before showing new state-of-the-art performance when combined with sequence-based matching. We also present results demonstrating the approach working with four different underlying descriptor types, and two other beneficial properties of Delta Descriptors in comparison to existing techniques: their increased inherent robustness to variations in camera motion and a reduced rate of performance degradation as dimensional reduction is applied. Source code is made available at https://github.com/oravus/DeltaDescriptors.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源