论文标题
平滑形成良好的Fano加权完整交叉点的分类
The classification of smooth well-formed Fano weighted complete intersections
论文作者
论文摘要
我们表明,平滑形式良好的Fano加权完整交叉口的一组属于方差$ \ MATHRM {var}(x)= \ Mathrm {Coind}(x)(x) - \ Mathrm {codim {codim}(x)$。此外,我们获得了平滑形成良好的Fano加权的分类,该交叉较小方差。 我们还证明,在抗宗教学位的光滑良好的Fano加权完全交点上,抗宪法线性系统绝不是不含基础点的。
We show that the set of families of smooth well-formed Fano weighted complete intersections admits a natural partition with respect to the variance $\mathrm{var}(X) = \mathrm{coind}(X) - \mathrm{codim}(X)$. Moreover, we obtain the classification of smooth well-formed Fano weighted complete intersections of small variance. We also prove that the anticanonical linear system on a smooth well-formed Fano weighted complete intersection of anticanonical degree one is never base-point free.