论文标题
完全欧拉的求解器,用于模拟具有固体的多相流:应用于表面重力波
A fully Eulerian solver for the simulation of multiphase flows with solid bodies: application to surface gravity waves
论文作者
论文摘要
在本文中,提出了一个完全欧拉的求解器,用于研究多相流,以模拟淹没物体上的表面重力波的传播。我们解决了不可压缩的Navier-Stokes方程以及使用界面对液相建模的流体技术的体积,一种用于固体物体的浸没身体方法以及用于流体结构相互作用的迭代强耦合程序。流动不可压缩性是通过泊松方程的溶液实现的,该方程式由于密度在液相的界面上跳跃,必须诉诸Dodd&Ferrante的分裂程序[12]。求解器通过与经典测试用例进行比较来验证流体结构相互作用,例如压力驱动通道中颗粒的迁移,多相流,圆柱体的水出口以及所有测试的良好一致性。此外,我们显示了求解器在表面重力波的情况下的应用,在淹没的反向摆上传播,并验证求解器是否可以重现波和摆之间的能量交换。最后,考虑了由淹没球引起的波浪的三维溢出破裂。
In this paper a fully Eulerian solver for the study of multiphase flows for simulating the propagation of surface gravity waves over submerged bodies is presented. We solve the incompressible Navier-Stokes equations coupled with the volume of fluid technique for the modeling of the liquid phases with the interface, an immersed body method for the solid bodies and an iterative strong-coupling procedure for the fluid-structure interaction. The flow incompressibility is enforced via the solution of a Poisson equation which, owing to the density jump across the interfaces of the liquid phases, has to resort to the splitting procedure of Dodd & Ferrante [12]. The solver is validated through comparisons against classical test cases for fluid-structure interaction like migration of particles in pressure-driven channel, multiphase flows, water exit of a cylinder and a good agreement is found for all tests. Furthermore, we show the application of the solver to the case of a surface gravity wave propagating over a submerged reversed pendulum and verify that the solver can reproduce the energy exchange between the wave and the pendulum. Finally the three-dimensional spilling breaking of a wave induced by a submerged sphere is considered.