论文标题
无$ C_4 $和$ C_5 $的平面图的灵活性
Flexibility of planar graphs without $C_4$ and $C_5$
论文作者
论文摘要
令$ g $为$ \ {C_4,C_5 \} $ - 带有列表分配$ L $的免费平面图。假设给出某些顶点的首选颜色。我们证明,如果所有列表至少具有四个尺寸,则存在$ L $的颜色,尊重至少持续的偏好分数。
Let $G$ be a $\{C_4, C_5\}$-free planar graph with a list assignment $L$. Suppose a preferred color is given for some of the vertices. We prove that if all lists have size at least four, then there exists an $L$-coloring respecting at least a constant fraction of the preferences.