论文标题
钻石中氮的不同方法的比较,用于广场量子显微镜
Comparison of different methods of nitrogen-vacancy layer formation in diamond for widefield quantum microscopy
论文作者
论文摘要
钻石底物中近地表氮脱胶(NV)缺陷的薄层是基于NV的广场磁显微镜的主力,该磁性显微镜在物理,地质和生物学中都有应用。存在几种方法来创建这种NV层,这些方法通常涉及通过生长和/或照射将氮原子(N)和空位(V)纳入钻石。尽管已经进行了单个方法的详细研究,但仍缺少对所得磁敏感性进行直接并排实验比较。在这里我们表征了房间和低温温度,通过三种不同方法制造的$ \ $ \ $ \ $ \ nm厚的NV层:1)低压高压高压高温(HPHT)钻石,2)碳辐射的碳辐射(2)$δ$δ$Δ$Δ$Δ$ - $Δ$ - $Δ CN $^ - $植入无N-Free CVD钻石。尽管在每种方法中有很大的可变性,但我们发现最佳的HPHT样品产生了相似的磁敏感性(平均在2个因子2之内)至我们的$δ$掺杂样品,$ <2 $〜$〜$〜$〜$〜$〜$〜$〜$〜$〜$〜$〜$〜$〜$〜$ th hz $^{ - 1/2} $ dc磁场和$ <100 $ <100 $ 〜nt hz $^{ - 1/2} $ AC(用于AC AC) $ 400 $ 〜nm〜 $ \ times〜400 $ 〜nm像素),而n $^+$和cn $^ - $植入的样品在房间和低温下都表现出2-5的较低敏感性。我们还检查了由各自方法引起的晶体晶格菌株,并讨论了这种对广场NV成像的含义。讨论了每种方法的优缺点以及潜在的未来改进。这项研究强调,尽管具有相对简单性和低成本,但低能辐射是一种竞争方法,是为广场磁成像创建薄的NV层的竞争方法。
Thin layers of near-surface nitrogen-vacancy (NV) defects in diamond substrates are the workhorse of NV-based widefield magnetic microscopy, which has applications in physics, geology and biology. Several methods exist to create such NV layers, which generally involve incorporating nitrogen atoms (N) and vacancies (V) into the diamond through growth and/or irradiation. While there have been detailed studies of individual methods, a direct side-by-side experimental comparison of the resulting magnetic sensitivities is still missing. Here we characterise, at room and cryogenic temperatures, $\approx100$ nm thick NV layers fabricated via three different methods: 1) low-energy carbon irradiation of N-rich high-pressure high-temperature (HPHT) diamond, 2) carbon irradiation of $δ$-doped chemical vapour deposition (CVD) diamond, 3) low-energy N$^+$ or CN$^-$ implantation into N-free CVD diamond. Despite significant variability within each method, we find that the best HPHT samples yield similar magnetic sensitivities (within a factor 2 on average) to our $δ$-doped samples, of $<2$~$μ$T Hz$^{-1/2}$ for DC magnetic fields and $<100$~nT Hz$^{-1/2}$ for AC fields (for a $400$~nm~$\times~400$~nm pixel), while the N$^+$ and CN$^-$ implanted samples exhibit an inferior sensitivity by a factor 2-5, at both room and low temperature. We also examine the crystal lattice strain caused by the respective methods and discuss the implications this has for widefield NV imaging. The pros and cons of each method, and potential future improvements, are discussed. This study highlights that low-energy irradiation of HPHT diamond, despite its relative simplicity and low cost, is a competitive method to create thin NV layers for widefield magnetic imaging.