论文标题
G^{2}中包含的Hamiltonian平面图的立方2相互连接的平面图G的扩展
An extension of a cubic 2-connected plane graph G to a hamiltonian plane graph contained in G^{2}
论文作者
论文摘要
令$ g $为简单的立方2个连接的平面图。对于每一个$ 2 $ -FACTOR $ x $ $ g $带有$ n $ -components存在一个简单的汉密尔顿平面图$ j \ subset g^{2} $,因此$ | e(j)| = | e(g)| + 2n -2 $和$δ(J)\ leqslant 5 $。
Let $G$ be a simple cubic 2-connected plane graph. For every $2$-factor $X$ of $G$ having $n$-components there exists a simple hamiltonian plane graph $J \subset G^{2}$ such that $|E(J)|= |E(G)| + 2n -2$ and $Δ(J) \leqslant 5$.