论文标题

poset $(\ mathbb {n}^{3},\ leqslant)$的单调注射式部分自我图的单调局部自我图,带有cofinite域和图像

The monoid of monotone injective partial selfmaps of the poset $(\mathbb{N}^{3},\leqslant)$ with cofinite domains and images

论文作者

Gutik, Oleg, Krokhmalna, Olha

论文摘要

令$ n $为正整数$ \ geqslant 2 $和$ \ mathbb {n}^n _ {\ leqslant} $是$ n $ - 正整数的$ n $ the,并具有$ \ mathbb {n} $的常规订单订单。在论文中,我们研究了$ \ mathbb {n}^n _ {\ leqslant} $的注入性部分单调自我图的半群,并使用Cofinite域和图像。我们表明,半群$ \ Mathscr {p \!o} \!_ {\ infty}(\ MathBB {n}^n _ {\ leqslant})$ isomorphic是组$ \ math $ scr y Math, $ n $ element集,并描述$ \ mathscr {p \!o} \!_ {\ infty}(\ Mathbb {n}^n _ {\ leqslant})$的$ \ mathscr {p \!o} \!_ {\ mathbb {\ mathbb {同样在这种情况下,在$ n = 3 $的情况下,我们描述了半群$ \ mathscr {p \!在Semigroup $ \ Mathscr {p \!o} \!_ {\ infty}(\ mathbb {n}^3 _ {\ leqslant})$。特别是我们表明$ \ Mathscr {d} = \ Mathscr {J} $ in $ \ MathScr {p \!

Let $n$ be a positive integer $\geqslant 2$ and $\mathbb{N}^n_{\leqslant}$ be the $n$-th power of positive integers with the product order of the usual order on $\mathbb{N}$. In the paper we study the semigroup of injective partial monotone selfmaps of $\mathbb{N}^n_{\leqslant}$ with cofinite domains and images. We show that the group of units $H(\mathbb{I})$ of the semigroup $\mathscr{P\!O}\!_{\infty}(\mathbb{N}^n_{\leqslant})$ is isomorphic to the group $\mathscr{S}_n$ of permutations of an $n$-element set, and describe the subsemigroup of idempotents of $\mathscr{P\!O}\!_{\infty}(\mathbb{N}^n_{\leqslant})$. Also in the case $n=3$ we describe the property of elements of the semigroup $\mathscr{P\!O}\!_{\infty}(\mathbb{N}^3_{\leqslant})$ as partial bijections of the poset $\mathbb{N}^3_{\leqslant}$ and Green's relations on the semigroup $\mathscr{P\!O}\!_{\infty}(\mathbb{N}^3_{\leqslant})$. In particular we show that $\mathscr{D}=\mathscr{J}$ in $\mathscr{P\!O}\!_{\infty}(\mathbb{N}^3_{\leqslant})$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源