论文标题
推荐系统中提供商公平性的Upsmpling和正规化之间的相互作用
Interplay between Upsampling and Regularization for Provider Fairness in Recommender Systems
论文作者
论文摘要
考虑建议对项目提供商的影响是多面推荐系统的职责之一。商品提供商是在线平台中的关键利益相关者,其收入和计划受其物品在建议列表中接收的曝光的影响。先前的工作表明,某些以常见敏感属性(例如性别或种族)为特征的少数群体群体受到间接和意外歧视的影响不成比例。我们在本文中的研究处理了($ i $)相同的提供商与建议用户建议的多个项目相关的情况,($ ii $)一个项目由多个提供商共同创建,而($ iii $)预测的用户项目相关性得分是针对提供商组的项目的偏见。在这种情况下,我们通过模拟目录和相互作用中少数群体的各种表示,评估相关性,可见性和暴露的差异。基于出现的不公平结果,我们设计了一种将观察结果上采样和损失正规化结合在一起的治疗方法,同时学习用户项目相关性得分。关于现实世界数据的实验表明,我们的治疗导致降低不同的相关性。由此产生的建议清单显示出更公平的知名度和曝光率,较高的少数族裔项目覆盖范围以及建议公用事业中的损失可忽略不计。
Considering the impact of recommendations on item providers is one of the duties of multi-sided recommender systems. Item providers are key stakeholders in online platforms, and their earnings and plans are influenced by the exposure their items receive in recommended lists. Prior work showed that certain minority groups of providers, characterized by a common sensitive attribute (e.g., gender or race), are being disproportionately affected by indirect and unintentional discrimination. Our study in this paper handles a situation where ($i$) the same provider is associated with multiple items of a list suggested to a user, ($ii$) an item is created by more than one provider jointly, and ($iii$) predicted user-item relevance scores are biasedly estimated for items of provider groups. Under this scenario, we assess disparities in relevance, visibility, and exposure, by simulating diverse representations of the minority group in the catalog and the interactions. Based on emerged unfair outcomes, we devise a treatment that combines observation upsampling and loss regularization, while learning user-item relevance scores. Experiments on real-world data demonstrate that our treatment leads to lower disparate relevance. The resulting recommended lists show fairer visibility and exposure, higher minority item coverage, and negligible loss in recommendation utility.