论文标题

来自混合正交阵列的$ K $均匀状态的构造

Constructions of $k$-uniform states from mixed orthogonal arrays

论文作者

Shi, Fei, Shen, Yi, Chen, Lin, Zhang, Xiande

论文摘要

我们研究$ k $均匀的状态在异质系统中,其本地尺寸混合在一起。基于混合正交阵列之间的连接,具有一定的最小锤距离,不冗余的混合正交阵列和$ K $均匀的状态,我们提出了两种在异质系统中的$ 2 $均匀状态的结构。我们还在异质系统中建立了一个$ 3 $均匀状态的家庭,该家庭解决了[D. Goyeneche等人,物理。 Rev. A 94,012346(2016)]。我们还展示了两种产生$(K-1)$ - 统一状态的方法。提供了一些关于绝对最大纠缠状态的存在和不存在的新结果。对于应用程序,我们提供一个正交基础,该基础由$ K $统一的状态组成,并提供最低支持。此外,我们表明,某些$ k $统一的基础无法通过本地操作和经典通信来区分,这表明了Quantum非局部性与纠缠。

We study $k$-uniform states in heterogeneous systems whose local dimensions are mixed. Based on the connections between mixed orthogonal arrays with certain minimum Hamming distance, irredundant mixed orthogonal arrays and $k$-uniform states, we present two constructions of $2$-uniform states in heterogeneous systems. We also construct a family of $3$-uniform states in heterogeneous systems, which solves a question posed in [D. Goyeneche et al., Phys. Rev. A 94, 012346 (2016)]. We also show two methods of generating $(k-1)$-uniform states from $k$-uniform states. Some new results on the existence and nonexistence of absolutely maximally entangled states are provided. For the applications, we present an orthogonal basis consisting of $k$-uniform states with minimum support. Moreover, we show that some $k$-uniform bases can not be distinguished by local operations and classical communications, and this shows quantum nonlocality with entanglement.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源