论文标题

向量空间上的半顺序连续运算符

Semi-order continuous operators on vector spaces

论文作者

Azar, Kazem Haghnejad, Matin, Mina, Alavizadeh, Razi

论文摘要

在此手稿中,我们将研究$ \ tilde {o} $ - 在(部分)订购的向量空间中的收敛和矢量空间$ v $中的一种融合。矢量空间$ v $称为半顺序向量空间(在短半顺序中),如果存在有序的矢量空间$ w $,而从$ v $到$ w $的运算符$ t $。这样,我们说$ v $相对于$ \ {w,t \} $是半顺序的。 net $ \ {x_α\} \ subseteq v $被称为$ {\ {w,w,t \}} $ - 订购订单接收到v $中的向量$ x \(简而满足$y_β\ downarrow 0 $ in $ w $,对于每个$β$,都存在$α_0$,因此每当$ \ pm(tx_α-tx)\ leqy_β$时,只要$ a \ geqy_β$。在本手稿中,我们研究和研究$ \ {W,t \} $ - 收敛网的某些属性及其与其他顺序收敛的关系部分有序的向量空间。假设相对于$ \ {{w_1},t_1 \} $和$ \ {w_2,t_2 \} $,$ v_1 $和$ v_2 $是半排序空格。从$ v_1 $到$ v_2 $的运算符$ s $称为半顺序连续,如果$x_α\ xrightArrow {\ {\ {{w_1},t_1 \}} x $ ins $sx_α\sx_α\ xrightArrow { V_1 $。我们研究了这种新运营商的一些特性。

In this manuscript, we will study both $\tilde{o}$-convergence in (partially) ordered vector spaces and a kind of convergence in a vector space $V$. A vector space $V$ is called semi-order vector space (in short semi-order space), if there exist an ordered vector space $W$ and an operator $T$ from $V$ into $W$. In this way, we say that $V$ is semi-order space with respect to $\{W, T\}$. A net $\{x_α\}\subseteq V$ is said to be ${\{W,T\}}$-order convergent to a vector $x\in V$ (in short we write $x_α\xrightarrow {\{W, T\}}x$), whenever there exists a net $\{y_β\}$ in $W$ satisfying $y_β\downarrow 0$ in $W$ and for each $β$, there exists $α_0$ such that $\pm (Tx_α-Tx) \leq y_β$ whenever $α\geq α_0$. In this manuscript, we study and investigate some properties of $\{W,T\}$-convergent nets and its relationships with other order convergence in partially ordered vector spaces. Assume that $V_1$ and $V_2$ are semi-order spaces with respect to $\{{W_1}, T_1\}$ and $\{W_2, T_2\}$, respectively. An operator $S$ from $V_1$ into $V_2$ is called semi-order continuous, if $x_α\xrightarrow {\{{W_1}, T_1\}}x$ implies $Sx_α\xrightarrow {\{W_2, T_2\}}Sx$ whenever $\{x_α\}\subseteq V_1$. We study some properties of this new classification of operators.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源