论文标题

使用深卷积神经网络的非线性功率放大器行为建模的一般体系结构

A General Architecture for Behavior Modeling of Nonlinear Power Amplifier using Deep Convolutional Neural Network

论文作者

Hu, Xin, Liu, Zhijun, Li, You, Xu, Lexi, Zhang, Sun, Li, Qinlong, Hu, Jia, Chen, Wenhua, Wang, Weidong, Helaoui, Mohamed, Ghannouchi, Fadhel M.

论文摘要

功率放大器的非线性是无线传输系统可实现能力的主要局限性之一。非线性损伤取决于功率放大器和调节器缺陷的非线性变形。已经证明了Volterra模型,几种紧凑型Volterra模型和神经网络模型,以建立一个非线性功率放大器模型。但是,这些模型的计算成本增加了,其实施需要更多的信号处理资源,因为信号带宽变宽或载体聚合的数量。一种完全不同的方法使用深层卷积神经网络从训练数据中学习,以找出非线性失真。在这项工作中,提出了基于深度实价卷积神经网络(DRVCNN)的一般架构的低复杂性,以构建功率放大器的非线性行为。使用等同于输入向量的每个多个输入中的每个输入,drvcnn张量重量是由训练数据构成的,这要归功于当前和历史信封依赖性术语I和Q,即输入的组件。验证了一般框架在建模单载波和多载波功率放大器中的有效性。

Nonlinearity of power amplifier is one of the major limitations to the achievable capacity in wireless transmission systems. Nonlinear impairments are determined by the nonlinear distortions of the power amplifier and modulator imperfections. The Volterra model, several compact Volterra models and neural network models to establish a nonlinear model of power amplifier have all been demonstrated. However, the computational cost of these models increases and their implementation demands more signal processing resources as the signal bandwidth gets wider or the number of carrier aggregation. A completely different approach uses deep convolutional neural network to learn from the training data to figure out the nonlinear distortion. In this work, a low complexity, general architecture based on the deep real-valued convolutional neural network (DRVCNN) is proposed to build the nonlinear behavior of the power amplifier. With each of the multiple inputs equivalent to an input vector, the DRVCNN tensor weights are constructed from training data thanks to the current and historical envelope-dependent terms, I, and Q, which are components of the input. The effectiveness of the general framework in modeling single-carrier and multi-carrier power amplifiers is verified.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源