论文标题
紧凑的,带电的玻色子星, - $ \ mathbb {c} p^n $引力非线性sigma模型
Compact, charged boson-stars, -shells in the $\mathbb{C}P^N$ gravitating nonlinear sigma model
论文作者
论文摘要
我们研究$ u(1)$衡量的重力compact $ q $ -ball,$ q $ -shell Solutions在具有目标空间的非线性Sigma模型中,$ \ mathbb {c} p^n $。具有奇数$ n $和特殊电位的型号可以通过$ n $ th的复杂标量字段进行参数化,并支持紧凑型解决方案。在模型中实现$ u(1)$量规字段,解决方案的行为比全球模型变得复杂。特别是,它们展示了分支,即两个具有相同拍摄参数的独立解决方案。对于小$ q $,第一分支中解决方案的能量表现为$ e \ sim q^{5/6} $,其中$ q $代表$ u(1)$ noether收费。对于大$ Q $,它逐渐偏离缩放$ e \ sim q^{5/6} $,对于$ q $ -shells,它是$ e \ sim q^{7/6} $,它构成了第二个分支。与重力的耦合可以携带Schwarzschild黑洞,用于$ Q $ - 壳溶液,形成带电的玻色子壳。当时的时空由壳体内部的一个带电的黑洞组成,周围环绕着$ q $ shell,外部变成了Reissner-Nordström时空。这些解决方案继承了平坦时空的缩放行为。
We study $U(1)$ gauged gravitating compact $Q$-ball, $Q$-shell solutions in a nonlinear sigma model with the target space $\mathbb{C}P^N$. The models with odd integer $N$ and a special potential can be parameterized by $N$-th complex scalar fields and they support compact solutions. Implementing the $U(1)$ gauge field in the model, the behavior of the solutions become complicated than the global model. Especially, they exhibit branch, i.e., two independent solutions with same shooting parameter. The energy of the solutions in the first branch behaves as $E\sim Q^{5/6}$ for small $Q$, where $Q$ stands for the $U(1)$ Noether charge. For the large $Q$, it gradually deviates from the scaling $E\sim Q^{5/6}$ and, for the $Q$-shells it is $E\sim Q^{7/6}$, which forms the second branch. A coupling with gravity allows for harboring of the Schwarzschild black holes for the $Q$-shell solutions, forming the charged boson shells. The space-time then consist of a charged black hole in the interior of the shell, surrounded by a $Q$-shell, and the outside becomes a Reissner-Nordström space-time. These solutions inherit the scaling behavior of the flat space-time.