论文标题
延迟分化的painlevé方程中的奇异性限制
Singularity confinement in delay-differential Painlevé equations
论文作者
论文摘要
我们在延迟分化的painlevé方程的示例中研究了奇异性限制现象,这些方程涉及单个自变量的偏移和衍生物。我们建议根据喷气空间之间的映射来对我们的结果进行几何解释,从而定义了某些奇异性类似于离散系统奇异性分析的奇异性,以及将它们限制在局限上。对于先前研究的延迟差异方程式的三个示例,我们描述了所有这些奇异性,并表明它们被限制在我们的几何描述的意义上。
We study singularity confinement phenomena in examples of delay-differential Painlevé equations, which involve shifts and derivatives with respect to a single independent variable. We propose a geometric interpretation of our results in terms of mappings between jet spaces, defining certain singularities analogous to those of interest in the singularity analysis of discrete systems, and what it means for them to be confined. For three previously studied examples of delay-differential Painlevé equations, we describe all such singularities and show they are confined in the sense of our geometric description.