论文标题
深度完成的不确定性了解的CNN:从头到尾的不确定性
Uncertainty-Aware CNNs for Depth Completion: Uncertainty from Beginning to End
论文作者
论文摘要
深度学习研究的重点主要是在推动预测准确性的限制。但是,这通常是以增加复杂性为代价而实现的,这引起了人们对深网的可解释性和可靠性的关注。最近,越来越多的关注是要解开深网的复杂性并量化其对不同计算机视觉任务的不确定性。不同的是,尽管深度传感器的固有性质固有,深度完成任务并未得到足够的关注。因此,在这项工作中,我们专注于建模深度完成深度数据的不确定性,从稀疏的嘈杂输入一直到最终预测。 我们提出了一种新的方法,可以通过基于归一化卷积神经网络(NCNNS)的方式学习输入置信度估计器,以识别输入中受干扰的测量。此外,我们提出了NCNN的概率版本,该版本为最终预测产生了具有统计学意义的不确定性度量。当我们在Kitti数据集上评估方法完成深度完成时,就预测准确性,不确定性度量的质量和计算效率而言,我们的表现优于所有现有的贝叶斯深度学习方法。此外,我们具有670K参数的小型网络以数百万个参数的常规方法执行PAR。这些结果提供了有力的证据,表明将网络分离为平行的不确定性,预测流可导致最新的性能,并具有准确的不确定性估计。
The focus in deep learning research has been mostly to push the limits of prediction accuracy. However, this was often achieved at the cost of increased complexity, raising concerns about the interpretability and the reliability of deep networks. Recently, an increasing attention has been given to untangling the complexity of deep networks and quantifying their uncertainty for different computer vision tasks. Differently, the task of depth completion has not received enough attention despite the inherent noisy nature of depth sensors. In this work, we thus focus on modeling the uncertainty of depth data in depth completion starting from the sparse noisy input all the way to the final prediction. We propose a novel approach to identify disturbed measurements in the input by learning an input confidence estimator in a self-supervised manner based on the normalized convolutional neural networks (NCNNs). Further, we propose a probabilistic version of NCNNs that produces a statistically meaningful uncertainty measure for the final prediction. When we evaluate our approach on the KITTI dataset for depth completion, we outperform all the existing Bayesian Deep Learning approaches in terms of prediction accuracy, quality of the uncertainty measure, and the computational efficiency. Moreover, our small network with 670k parameters performs on-par with conventional approaches with millions of parameters. These results give strong evidence that separating the network into parallel uncertainty and prediction streams leads to state-of-the-art performance with accurate uncertainty estimates.