论文标题
$ f(\ MATHCAL {G})$ GREATITY NOETHEMETRIES中的恒星结构
Stellar Structures in $f(\mathcal{G})$ Gravity Admitting Noether Symmetries
论文作者
论文摘要
这项工作旨在使用Noether对称方法来调查修改后的$ f(\ Mathcal {g})$重力中相对论紧凑的恒星对象的某些可能出现。为此,我们假设在各向同性物质分布的情况下假设静态的球形对称时间。我们通过考虑可行的$ f(\ Mathcal {g})$重力模型的标准选择来构建Noether对称发生器以及相关的保守量。特别是,我们使用从经典Noether方法获得的保护关系,通过施加一些适当的初始条件来构建度量电位。所获得的保守数量在描述紧凑型恒星的恒星结构中起着至关重要的作用。此外,通过考虑适当的数值解决方案,通过分配涉及的模型参数的合适值来讨论紧凑型恒星结构的某些显着特征,例如有效的能量密度,压力,能量条件,针对力平衡的稳定性和声音速度。我们的研究表明,来自Noether对称方法的$ f(\ Mathcal {g})$重力中的紧凑对象取决于获得的保守数量和模型参数$α$。简而言之,Noether对称性对生成遵循物理接受现象的解决方案非常有帮助。此外,我们观察到这些获得的溶液与天体物理观察数据一致,该观察数据描述了我们提出的Noether对称方案的生存能力。
This work aims to investigate some possible emergence of relativistic compact stellar objects in modified $f(\mathcal{G})$ gravity using Noether symmetry approach. For this purpose, we assume static spherically symmetric spacetime in the presence of isotropic matter distribution. We construct Noether symmetry generators along with associated conserved quantities by considering the standard choice of viable $f(\mathcal{G})$ gravity model i.e. $f(\mathcal{G})= α\mathcal{G}^{n}$, where $α$ is the model parameter. In particular, we use conservation relation acquired from the classical Noether approach by imposing some appropriate initial conditions to construct the metric potentials. The obtained conserved quantity play vital role in describing the stellar structure of compact stars. Moreover, by considering an appropriate numerical solution, some salient features of compact stellar structures like effective energy density, pressure, energy conditions, stability against equilibrium of the forces and speed of sound are discussed by assigning the suitable values of model parameter involved. Our study reveals that the compact objects in $f(\mathcal{G})$ gravity from Noether symmetry approach depend on the conserved quantity obtained and the model parameter $α$. In nutshell, Noether symmetries are quite helpful to generate solutions that follow physically accepted phenomena. Moreover, we observed that these obtained solutions are consistent with the astrophysical observational data, which depicts the viability of our proposed Noether symmetry scheme.